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A field-theoretical approach to one-dimensional Brownian 
motion in a cosine potential 

Toshihuo Tanizawa 
Depamnent of Physics, Kyoto University, Kyoto, 606-01, Japan 

Received 9 June 1994 

Abstract. One-dimensional (ID) Brownian motion in a cosine potential for the case of weak 
noise is considered quantitatively. The probability distribution of the motion is derived through 
the ‘instanton’ treatment of quantum field theory under some assumptions. This approach leads 
to a convenient form of the probability distribution for the calculation of the meamsquared 
deviation andlor the effective diffusion constant. Comparison with numerical simulations is 
reported. 

1. Introduction 

Brownian motion is that undergone by a particle in a thermal reservoir. This motion is 
modelled by considering the particle to be subject to a stochastic noise force. Because 
of the randomness of the noise, the position of the particle is described by a probability 
distribution that the particle is within a given position interval at a given time when the 
original position is specified. 

There are several examples in which the probability distributions are exactly known [I]. 
One of these is, of course, the Brownian motion of a free particle. In this case, the particle 
can run away anywhere as the observation time tends to infinity. Another well known 
example is the so-called Ornstein-Uhlenbeck process, describing the stochastic motion of 
a particle subject to a harmonic potential in a viscous medium. In this process, the mean 
deviation of the particle is always finite however long we may observe; the motion is 
confined around the minimum of the harmonic potential. The reason for this confinement 
is obvious. In a harmonic potential, the further the particle moves from the minimum, the 
stronger is the force which brings the particle hack 

Motion in a ID cosine potential has, in some sense, an intermediate nature between that 
of the free particle and that in a harmonic potential. Here, the potential has multiple minima. 
and the direction of the force changes periodically. When the particle is near a minimum, 
the potential to which the particle is subject is almost harmonic, and the particle is pulled 
back to the original minimum. Thus. if we observe the motion locally, it is similar to that 
of the Ornstein-Uhlenbeck process. However, when the particle moves a distance equal to 
half the period of the potential, the direction of the force changes, and the particle tends to 
be pulled toward the next minimum. Thus, if we see the motion globally, the particle can 
diffuse to any distance from the original minimum as the observation time tends to infinity. 
In other words, the universality class of the motion is that of Brownian motion of a free 
particle. The effective diffusion constant is, however, much reduced from the original one 
because of the pull-back force. When the ‘bare’ diffusion constant is sufficiently small, the 
particle will remain at the original minimum even after a very long time. In such cases, 
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the motion is effectively confined to one particular minimum during some characteristic 
time. The characteristic time may be so long that, in the application to real problems, the 
diffusive nature of the motion does not appear during a practical observation time. 

In order to clarify this point, a quantitative study of the probability distribution of this 
motion is needed. There are, of course, many studies on Brownian motion in a periodic 
potential [Z]. To the best of our knowledge, however, no convenient form of the probability 
distribution of Brownian motion in a genuine cosine potential can be found in the literature, 
even under approximations. 

In this paper, we treat the probability distribution of this system to fill this gap. We 
proceed as follows. In section 2, the probability distribution of the motion for the case of 
weak noise is derived. In the derivation, a functional integral approach is used. As far as 
we know, there is no previously existing explicit use of this approach for the consideration 
of the probability distribution of the system in question. Using this result, the mean-squared 
deviation and the effective diffusion constant are calculated. In section 3, the qualitative and 
quantitative picture of this Brownian motion is described. In addition, the comparison of 
these results with numerical simulations is reported. The technical details of the calculation 
in section 2 are included in appendices. 

2. Derivation of the probability distribution and the eff&ve diffusion constant 

The system of interest is described by the following Langevin equation: 

d 
dt -q(t )  = -,9sinq(f) + U@) (1) 

where q(t )  is the position of a particle at time f ;  p is the height of the potential, and u(t) is 
a ‘white noise’ force. The time-time correlation of this noise force is given by the equation 

(2) 

where D is the diffusion constant of the system, and S(x) is the Dirac delta function. We 
rewrite (1) and (2). rescaling time to obtain the following equations: 

( ~ ( t ) ~ ( t ’ ) )  = ZDS(t - t’) 

(3) 
d -q(r) = -sinq(r) + u(r )  

d r  
and 

(u(r)u(r’)) = k S ( r  - r’) (4) 

where r(= pt) is the dimensionless time, and a(= D / p )  is the dimensionless diffusion 
constant. In the following, the terms ‘time’ and ‘diffusion constant’ will always denote 
these dimensionless quantities. 

Our concern is the probability distribution P(q ,  2‘) that the particle is in a given position 
interval (q,  q+dq) at a given time T .  We take the position at T = 0 to be q = 0. Generally 
speaking, in the study of probability distributions of stochastic processes, it is common to 
consider the Fokker-Planck equation of the system with suitable boundary conditions. In 
this case, the Fokker-Planck equation is 

(5 ) 
a a2 a .  

- Q q ,  r )  = oc-P(q, 5) + - ( smqP(q ,  5 ) )  . 
as aq2 aq 

It is very diecult, however, to solve this differential equation analytically. 
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Rather than attempting to solve this Fokker-Planck equation directly, we take another 
approach. It is known that the solution of the differential equation ( 5 )  is formally expressed 
in the functional integral representation [3] 

P ( q ,  T) = Dq(r)exp (- y) 
where the ‘action’ functional is 

with the ‘Lagrangian’ 

N in (6) is a normalization constant. The functional integration is taken over the set of all 
paths which satisfy the boundary condition that the particle is at the origin when r = -TI2 
and at the position q when r = T/2. Notice that for convenience we have redefined the 
origin of time. 

Even in this representation, it is very difficult to perform this integration under the 
most general conditions. We therefore confine our interest to the case of a small diffusion 
constant of the order unity or smaller and long observation time of the order lo4 or more. 
As stated in the introduction, this case is of interest in this paper. In addition, we make 
the following argument in order to simplify the form of the probability distribution from 
a physical point of view. As described in the introduction, the motion near each potential 
minimum is almost the same as that of the Orstein-Uhlenbeck process when the diffusion 
constant is small. The Omstein-Uhlenbeck process has the following normalized stationary 
probability distribution: 

in our units; qo is the position of the potential minimum. We assume that the probability 
distribution in a cosine potential can be decomposed in the following form: 

p ( q ,  T) = P d a ,  T)podq: 2nn) (10) 
n 

where n is an integer. The normalization condition becomes 

since Pou(q; 2na) is already normalized. Pan(ol, t )  can be interpreted as the discretized 
probability that the position of the particle falls within one particular sector ((2n - l ) a ,  
(2n + 1) x )  after a long time T for a small diffusion constant or. The boundary condition 
for the evaluation of Pb,, (or, T) is that q = 0 at t = -T/2 and q = 2nn at r = T/2. 

In this case, we can use the ‘instanton’ reatment of quantum field theory for the 
evaluation of the functional integral. When ci is sufficiently small, the functional integral in 
(6) is almost completely governed by the paths which give the extrema of the action. Such 
paths satisfy the Euler-Lagrange equation 

(12) 

The trivial solution is the stationary solution, q(r)  = 2nrr. But this path does not contribute 
to the probability Pb,(a, T) when n # 0. The important solution for our problem is the 

dZ - q(r) =sinq(t)cosq(r)+orsinq(s). 
d t 2  
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Figore 1. Shapes of insmtons for three vdues of 
m. The 'jump' time at which each instanton passes 
though Ihe potential maximum x is chosen to be 
zero. 

.Q 

'instanton' solution. This solution satisfies the boundary condition that the position at 
r = -w is 2nrr and that the position at r = +w is 2(n rt 1)n. The solution with the 
positive sign is called an instanton, and that with the negative sign is called an anti-instanton. 
At an arbitrary time during this interval, the particle at a given minimum 'instantaneously' 
tunnels through the potential barrier to the next minimum. From the direct integration of 
(12), we can obtain the implicit expression of the instanton solution 

(13) 
dG r - ro= 

L + w  JsinzG + 4orsinz(G/2) 

(J-+U0)"d 

4 A T Z  log (J- - u 0 y  - U2 

where ro is the time when the particle passes the maximum of the potential. We call this 
the 'jump' time. q takes a value between 2nn and 2(n + 1)x. This integration can be 

performed analytically, and we have 

(14) 
1 

s - 7 0 =  

with 

uo = cos(q/2) 2nn < q < 2(n + 1)n . (15) 
The shapes of the instantons are shown in figure 1 for several values of U. The order of 
the 'width' of these instantons are about ten in our unit for the values of U in interest. 

Using these. 'instantons', we can perform the functional integration in (6). Although 
the calculation is fairly standard [4], we describe it briefly for the sake of completeness. 
Each path which contributes to this calculation starts from the origin at 5 = -T/2 and 
reaches the position 2nn at r = T/2. Between these times the particle can go anywhere. 
Now, the diffusion constant U is very small and the observation time T is very long by 
assumption. In this case, the important paths are arbitrary connections of m-instantons and 
fi-anti-instantons which satisfy the relation m - f i  = n. In figure 2, we show an example 
of such paths. 

Before proceeding with the evaluation of the functional integral, we should note that 
the following calculation is based on the so-called dilute gas approximation, in which it is 
assumed that the distance between each instanton is large compared to the width of one 
instanton. This assumption is justified because the observation time T .., O(1P) is very 
large compared to the width of the instantons (- O(10)). A more detailed account of the 
validity of this approximation can be found in the next section. 
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Figure 2 An example of the path which contributes to P*. This path consists of three 
instantons and two anti-instantons. The 'jump' times of instantons a~ denoted as r l .  r2. r3  
and that of anti-instantons as r'l. r'2. 

In the dilute gas approximation, the width of an (anti-)instanton is considered to be 
infinitesimal. The contribution from one particular path (e.g. the one in figure 2) consists 
of the following factors. 

(i) Since the locations of each instanton in the interval ( -T/2,  T / 2 )  are arbitrary, there 
is a factor due to the integration over the location of the centre of the m instantons: 

Similarly, the factor from the A anti-instantons is T' / f i ! .  

(anti-)instanton, which we denote as So. We have 
(ii) From each (anti-)instanton, there is a factor due to the action of a single 

after an elementary calculation (see appendix A). 
For the m-instanton and A-anti-instanton path, the factor due to this action is 

(iii) Finally, we include the harmonic fluctuations around the path. One instanton path 
is almost straight except in the vicinity of the 'jump' time. In figure 3, we show three time 
regions in an instanton path in the time interval (-t /2, t / 2 ) .  The 'jump' time is b. In the 
regions tr and tm, the path is considered to be straight. Since the region tu is infinitesimal 
compared to the whole interval, the factor due to the fluctuations around this path can be 
written as 

(19) 
( 1  f ")'/4e-rJiT;;/*- 4 ( 1  t 4 5 / 4  

(fluctuation around a straight line) x K = 6 f i .  
where K is a correction factor from the contribution from the region in. For a detailed 
description of the calculation of K, see appendix B. To sum up, the factor due to the 
harmonic fluctuations for the m-instanton and A-anti-instanton path is 

Up to now, the contribution from one particular path is 
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time region 

Figure 3. Three time regions of an instanton. In regions I and Ill. the path is almost straight. 
A significant conhibution of fluctuations different from a straight line comes from mgion 11. 

After summing up all the contributions from the paths which satisfy the condition 
n = m - rk, we have the expression for Phn (a, T), which is 

(KTe-SO/z")m (KTe-%/k)fi 
P h  = (n-independent factor) cBm-fi,n 

m! r k !  m,fi 

where S;,j is the Kronecker S symbol. 
With the help of the identity 

we can calculate Pbn (a. T) as 

= L(z(a, T)) (24) 
with the argument z(a, T), which is the dimensionless time-scale of the motion 
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L(z) is the modified Bessel function of the nth order. Notice that the dependence of this 
time-scale z(a, T )  on (Y is highly non-analytic for small a. In other words, this result cannot 
be obtained through a perturbative approach. 

For normalization, the identity 

e2 = I0(~)+211(2)+21~(2)+. . .  (27) 

is useful [5 ] .  Using this identity, we obtain the normalized probability distribution: 

pkz(a9 T) = MZ((Y, T))exp(-z(a, T)). (28) 

This is the first result of this paper. 
The next important quantity of the motion is the mean-squared deviation as a function 

of observation time. Now that we have the probability distribution, we can calculate this 
quantity as follows: 

In order to calculate the first term, we use the identity [5] 

m 
ezcosa = I~(Z)  +2C1,(z)cosne.  (29) 

"=l 

After taking the derivative with respect to 0 twice, we set 0 = 0, and we have 

Thus, the mean-squared deviation becomes 

(42) = 4nzz +a. 

Since z = 2KTe-'OIb, 

(4') =4n22KTe-'01k+a. 

Therefore, after a long time, the mean-squared deviation is almost proportional to the 
observation time; in other words, the long time behaviour of the motion is indeed that 
of the free diffusion. 
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The effective diffusion constant of the motion is well defined 

This is the second result of this paper. 

3. Discussion and conclusion 

First, we argue the validity of the dilute gas approximation. In the dilute gas approximation, 
it is assumed that the instantons or anti-instantons on each path are well separated. This 
means that the important paths in the summation in (22) are those of which the density of 
instantons or anti-instantons is small. For any fixed x ,  the terms in the exponential series, 
x n x " f n ! ,  grow with n until n is of the order of x ,  and after this point, they begin to 
decrease rapidly. Applying this to the sum in (22), we see that the important values of m 
are those for which m - KTe-S012U. Thus, the important density of the instantons in the 
summation in (22). 

m 
T - N KewSO/& (34) 

depends only on a. For a = 0.1, Ke-Sn/k 2 3.3 x lo-", This value increases 
monotonically with a. For CY = 0.5, Ke-SO/" 2 3.9 x IO-'. Therefore, the dilute gas 
approximation is valid for values of a of interest. 

Next, we proceed to the qualitative and quantitative discription of Brownian motion in 
a cosine potential using the probability distribution derived in the previous section. 

In figure 4, we plot the effective diffusion constant (33) as a function of the 'bare' 
diffusion constant a. The plot is for 0.15 < a < 0.20. For comparison, we also show 
in this figure two sequences of data obtained by direct sampling of the h g e v i n  equation 
(1). For each data point, we took the mean-squared deviation (4') of 1000 samples after 
a running time T = 3 x lo4. The diffusion constants were calculated as (q2)/2T. For 
a c 0.15, the mean-squared deviation is of the order of the bare diffusion constant a, and 
does not increase during the running time of the simulations. For CY < 0.17, the finings are 
satisfactory, and we may say that for such values (33) describes the nature of the motion 
well. For a > 0.17, the deviation of the theoretical values from the data obtained by 
simulations becomes larger. This manifests the invalidity of the saddle-point evaluation 
of the functional integration. Note that the theoretical values are always larger than those 
found from simulations. This means that the value obtained from (33) can be used as an 
upper bound of the effective diffusion constant for any values of a. 

Next, we consider the time evolution of the position of the particle. 
As described in the previous section, the qualitative nature of the motion is that of the 

free particle diffusion. In other words, the particle can always escape from the original 
minimum however small the diffusion constant is. In many cases of the application to real 
problems, however, there is an intrinsic time-scale of the system. and the situation that the 
motion is effectively confined to the original minimum within this time-scale can occur. 

Using the expression of the mean-squared deviation (32), we can define the characteristic 
time T; as the value at which the relation 

(4') = 4 ~ ~ 2 K T ; e - ~ / ~  + a = 4a2 (35) 
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F i r e  4. Effective diffusion constants are plotted as a function of a 'bare' diffusion conslmt. 
For comparison. two data sets obtained from numerical simulations are also plotted. Below 
(I sz 0.17, the fitting is satisfactory. 

25.0 

10.0 - 

I 
0.20 0.25 5.0 I 

0.10 0.15 
a 

Figure 5. Logarithm of chamtenstic times Ti during which the particle is eonfined to the 
original minimum are plotted as a function of a diffusion mnstanl. 

holds for a given value of a; (q2) z 4 6  implies that the particle begins to diffuse to the 
next minimum For T < T,*, the particle motion is confined to the original minimum. In 
figure 5, we show the plot of this characteristic time T.. Since the values of (4') used here 
is an upper bound, that for T. is a lower bound. For a 6 0.17, this is a very good lower 
bound. For a < 0.2, the characteristic time is larger than 10". 
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In conclusion, we have calculated the probability distribution of Brownian motion 
in a cosine potential for a weak noise using the ‘instanton’ treatment of quantum field 
theory under some assumptions. The mean-squared deviation and the effective diffusion 
constant have also been calculated. Comparison of these results with numerical simulations 
are satisfactory where the ‘instanton’ treatment is valid, and the calculated values of the 
effective diffusion constants give an upper bound even in the region where the treatment is 
invalid. The characteristic time during which a particle is effectively confined to a particular 
minimum has been defined for a given value of the diffusion constant. This characteristic 
time becomes very long when the diffusion constant becomes small. 
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Appendix A. The action of a single instanton 

The instanton path satisfies the Euler-Lagrange equation 

q = sinqcosq + as inq .  

Multiplying this by q ,  we have 

( q ) 2  = 4 (1 - cos2q) + 2a (1 - cosq) . 
Thus, the time derivative of the instanton path satisfies the equation, 

4 =  /- sin q f 4 a s i n  - .  

The action of a single instanton is calculated as follows: 

m 

d r + [ ( 4 + s i n q ) * + k ( 1  -cosq)] 

= ~ ~ d r f ( q z + s i n 2 q + Q 1 s i n  

The second term vanishes, and, using (Al), we have 

m 2a 

So L m d r  (4)’ = dqq 
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Appendix E. The fluctuation around the one-instanton path 

In this appendix, we show the detailed description of the calculation of the factor K in 
section 2. 

An instanton is a classical particle which moves in a potential 
V ( q ) = ~ c o s 2 q + u c o s q .  

In order to include fluctuations around a one-instanton path, we write an arbitrary path as 
an instanton plus fluctuation around it, 

q( t )  = I @ )  + W) 
where we denote an instanton as q( t ) .  The contribution from this oneinstanton path to 
Pan is 

=Ne-%'" [det ( - a,? + V"(q))]-'/' (B1) 
where V"(q) is the second derivative of V ( q ) ,  and det (-8: + V"(q)) is the determinant of 
the operator (-8: + V"(d)). The operator (-8: + V"(q)) has, however, the zeromodes; 
we can verify that </A is indeed the solution of the zero-mode eigenvalue equation 

with the normalization condition of the solution 
( - a: + V'Yq))qo(r) = 0 

dt[qo(t)]*  = 1. 
I-m 

Thus, (Bl) diverges at first sight. 
This divergence is fictitious. It is known that the integration of the amplitude of the 

zero-mode fluctuation is identical to the translational freedom of the 'jump' time of an 
instanton within the time interval (-T/2, T/2), and that the factor m T  takes care 
of this integration [4]. 

Thus, (B1) becomes 

where det' means the determinant with the zero eigenvalues excluded 
On the other hand, this is equal to 

It can be proved that 

After equating (B2) with (B3). we have 
det (-8: + 1 + U) ' I2 K=F[ 4au det' (-8: + vff(q)) 1 
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Now, we proceed with the calculation of k. We calculate this quantity with the aid of 

The Fredholm determinant is defined as 
the Fredholm determinant [6]. 

det (fi - E )  
det (Go - E )  

A ( E )  

with respect to two operators fi and &. This is a function of a real parameter E. In our 
problem, 

A = -a; + vfr(q) 

fi0 = -a, + 1 + 0 1 .  

V”(@ -+ 1 + O1 

and 
2 

It should be noted that 

t + f o o  . 
(we write Sz = 1 + 01 in the following.) 

Using this Fredholm determinant, we can evaluate as follows: 

where En and Em are the eigenvalues of f? and 60, respectively; n‘ means the product 
with the zero eigenvalues is excluded. 

For the evaluation of A‘@), we borrow a technique from 1D scattering theory. Let us 
consider the scattering problem represented by the Schrodinger equation 

(B6) 

where E > pz. The solutions are parametrized by E. There is a two-fold degeneracy of 
the solutions for each value of E ,  reflecting the fact that the wave can approach from either 
direction. These solutions, denoted by f*(t, E ) ,  have the following asymptotic forms: 

[-a; + v ” ( ~ ) ] J I  = E J I  

f*(t. E )  + e*ikf t + k W  
(B7) 

f*(t. E )  -+ eTiXrA*(E) + eW”F*(E) t + i o o  

where k2 = E - 6’. The reason that we take these asymptotic forms is because it is known 
that 

F+(E) = F-(E) = A ( € ) .  

The Wronskian is defined as 

w [f+(t, E ) ,  f-v, E O ]  = f d t ,  E)a,f-(t, E‘) - a,f+(t. ~ ) f - ( t ,  EO. 
Taking the time derivative of the Wronskian and using the fact that f*(f, E )  are the solutions 
of @6), we have 

%W [f+(t. E ) ,  f-(t, E‘)] ( E  - E’)f+(t, E)f-(t, E’). 
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We are now interested in the case that E ,  E‘ % 0, because we want to calculate A’(0). 
We h o w  that the zero-mode solution is proportional to 4.  The asymptotic form of 4 is 
calculated from (14), 

4+4- ’ 1+ffe-6t=Ae-61 t - + f w ,  
.JT; 

So that 

Thus, 

(4)* a,a,w -+ f+(t,o)f-(t.o)=- E,E‘-+o.  
A2 

After integrating with respect to t from -w to CO, we have 
. 2  so 

A2 
d t (g)  = -  E,E‘-+O. 

m 

On the other hand, when E = 0, the asymtotic forms (B7) become 

f + ( t ,  E )  + e+ t - + f w  

f&, E )  -+ e-BtrtA+(E) +e”’lA(E) 
Using this, the leading terms of the Wronskians are 
W [f+(t, E). f-(t, E’)] 2 2JA(E’) for E % E’ ~ t :  0 and t + w 

and 
W [f+(r, E), f-(t, E‘)] 2 2BA(E) for E % E‘ Ft: 0 and f -+ --oo 

Hence 

t + TOO. 

dr atW = 2&A(E‘) - A(E)). 

Thus 
m 

a,Lmdt&W=-@A’(E)-+ -ZgA’(O) E,E’+ 0 .  (B 10) 

Equating (B8) and (BIO), we have 
so -28 A‘(0) = - 
A2 

so, 

From @5), 

This completes the calculation of K. From (B4). 
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